

## INTERNET OF THINGS: TRENDS, DIRECTIONS, OPPORTUNITIES, CHALLENGES

### I. F. AKYILDIZ

#### Ken Byers Chair Professor in Telecommunications

Georgia Institute of Technology School of Electrical and Computer Engineering BWN (Broadband Wireless Networking) Lab Atlanta, GA 30332, USA http://www.ece.gatech.edu/research/labs/bwn



## What is the Internet of Things?

Internet connects all people → "Internet of People" IoT connects all things → "Internet of Things"



Interconnection of Things or Objects or Machines,

e.g., sensors, actuators, mobile phones, electronic devices, home appliances, any existing items and interact with each other via Internet.





### MAJOR SUBJECT OF 5G WIRELESS SYSTEMS (2020-2030)

Connection of 7 Billion of People and 7 Trillion Things



4



# **MAJOR CHARACTERISTICS**

Very Large Scale

Heterogeneity

Pervasivity

Computing and communication technologies will be embedded in our environments



# 4 Layers Model of IoT

Integrated Application

Information Processing











Env. Monitor

Info. Security Data Mining

Network Construction

Sensing and Identification IFA'2017



6



### **INTERNET OF UNDERWATER THINGS**





#### **INTERNET OF UNDERGROUND THINGS**











### **INTERNET OF BIO-NANOTHINGS**

I.F. AKYILDIZ, M. PIEROBON, S. BALASUBRAMANIAM, Y. KOUCHERYAVY, "THE INTERNET OF BIO-NANOTHINGS", IEEE COMMUNICATIONS MAGAZINE, MARCH 2015

#### **Objective:**

To interconnect the heterogeneous Bio-NanoThing Networks to the Internet







#### TOP INDUSTRIES KEY FOR IOT APPLICATIONS DEVELOPMENT AND REVENUE GENERATION





# **RECENT IoT PRODUCTS**

| 72                        |                                  |                          |                          |
|---------------------------|----------------------------------|--------------------------|--------------------------|
|                           | Corventis: Wireless              |                          | Tractive                 |
| NEST Thermo               | stat Cardiac Monitor             | WEMO Remote              | Pet Tracker              |
|                           |                                  |                          | <b></b> _                |
|                           | Revolve                          | ThingWorx                | Lings                    |
| Ninja Block               | s Home Automation                | Application Platform     | Cloud Platform           |
| Abed Developm<br>Platform | nent Xively Remote<br>Access API | Intel Quark<br>Processor | AllJoyn S/W<br>Framework |
| IFA'2017                  |                                  |                          |                          |



# IOT PLATFORMS ON THE MARKET

GE Predix
Cisco IoT Cloud
IBM Watson IoT
PTC ThingWorx



# **GE PREDIX**

Uses a platform as a service (PaaS) model and is a cloud-based OS

Built on Cloud Foundry, an open-source platform, and is optimized for secure connectivity and analytics at scale, both in the cloud and on the edge



# **CISCO IoT CLOUD**

- Designed around six pillars of technology:
  - Network connectivity
  - Fog computing
  - Data analytics
  - Security (cyber and physical),
  - Management/automation, and
  - Application enablement.

Cloud addresses challenges across a wide variety of industries, including manufacturing, utilities, oil and gas, transportation, mining, and the public sector. IFA'2017



# **IBM WATSON IoT**

### Cloud Foundry, Docker<sup>®</sup>, OpenStack<sup>®</sup>, Watson IoT Platform development

### **Platform connects sensors to cloud applications using IBM Bluemix®**



# **PTC® THINGWORX®**

### Three pillars of technology:

- Core application enablement
- Connection services with device and cloud adopters, and
- Edge connectivity using the Edge MicroServer and Edge "Always On" devices

### (27% market share)



- **APPLICATION OF IOT: SMART HOME**
- Remote Monitoring/Control (Appliances)
- Safety: When do the doors open/close?
- Energy Management: Turn off the lights/AC?
- Maintenance: Are the sinks/pipes leaking?
- Entertainment Control





### **ADOPTION OF IOT NETWORKS: HEALTHCARE INDUSTRY**

The global IoT healthcare market is expected to grow from \$32.47 billion in 2015 to \$163.24 billion by 2020:

- Remote patient monitoring services
- Mobile health technology
- Telemedicine
- Medication Management
- Improved Clinical Care
- Employee workflow management and
- Inpatient monitoring







## **Intelligent Transportation**

• Driver warning, autopilot, emergency self stop, traffic management

- Real-time vehicle tracking and fleet management
- Route planning information, high-precision estimated arrival times
- Valuable data for insurance companies







## **ADOPTION OF IOT NETWORKS: SMART GRID**

#### Utility companies use IoT to improve

- \* asset performance
- \* reduce costs
- \* infrastructure management,
- \* lower supply chain risks and
- \* empower employees and consumers
- \* More efficient and proactive maintenance

By the end of 2017, annual smart grid spending in China could total \$20 billion, with smart meters comprising \$2 billion of that total





## **TRENDS IN SPENDING FOR IoT SOLUTIONS**

Worldwide IoT market will grow from \$655.8 B/2014 to \$1.7 T/2020 with a compound annual growth rate of 16.9%.

IoT analytics market is estimated to grow at a CAGR of 27.48% from 2015 to 2020 to reach \$ 16.35 B by 2020.

Total service spending (including professional, consumer and connectivity services) will reach \$482 billion in 2020, growing at a 21% CAGR from 2013.

IoT market in manufacturing operations will grow from \$42.2B/2013 to \$98.8B/2018

Global spending on retail IoT initiatives is expected to grow from \$14.3 B/2015 to \$35 B/2020.









## **MAJOR OBSTACLES FOR IoT DEPLOYMENTS**

- High Costs of required investment in IoT infrastructure
- Concerns about security and privacy
- Lack of senior management knowledge/commitment
- Weaknesses in organization's technology infrastructure
- Regulation (e.g., relating to data privacy)
- Weaknesses in public com infrastructure available to organization
- Immaturity of industry standard around the IoT
- General economic uncertainty
- Undeveloped consumer awareness
- **IFA'2017** Absence of business case/business model



WHAT MEASURE THE COMPANIES TAKEN TO USE THE IoT MORE EXTENSIVELY IN THE BUSINESS

- Seeking advice from third party experts/consultants
- Learning from the successes or failures of early movers
- Training existing staff to work with the IoT
- Conducting or sponsoring research to establish market size/demand
- Establishing a cross-functional task force to explore and/or pursue IoT opportunities
- Introducing new business models
- Raising fresh capital to explore IoT options
- Hiring talent with IoT capabilities
- Establishing joint ventures or alliances to exploit IoT opportunities
- Establishing an IoT center of excellence
- Acquiring a business or assets with IoT capabilities



### IoT TRENDS TO WATCH IN THE FUTURE

- IT services (business consulting) → Major Driver
- IoT drives demand for DATA ANALYTICS: Data must be managed, integrated and analyzed
- IoT drives demand for CLOUD COMPUTING
- IoT data → DATA BROKER IoT generated data is bought, analyzed and sold e.g., IBM buys The Weather Company data
- Interoperability Problems

Security



### **RESEARCH CHALLENGES**

- Scalability (Massive Number of Devices)
- Handle data generated by 50 billion devices
- Reliable Coverage
- Move cloud services to edge of the network (Fog Computing)
- Reduce data to be stored (Processing and Storage)
- Power Consumption Problem (Energy Harvesting; SW Optimization)
   SDN/NFV Based IoT



## SDN/NFV Based IoT (5G)





# **CHALLENGE: STANDARDIZATION**

### Standardization for

- Interoperability
- Heterogeneity of Sensors
- Interfaces to Cloud Servers